用于残余振动抑制的深度神经网络输入整形器
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12141/j.issn.1000-565X.200690

用于残余振动抑制的深度神经网络输入整形器

引用
针对多轴伺服系统在高速运动急停段因系统柔性产生的残余振动问题,提出了一种适用性广的后置自适应输入整形器算法.该算法无需辨识系统模态参数,以递归最小二乘法(RLS)为基础,残余振动信号作为算法输入,优化得到当前轨迹下抑振效果最优的整形器系数向量,并引入自适应遗忘因子更新算法,以提高整形器在非平稳环境下的跟踪性能.同时建立多层全连接神经网络模型,选择多组激励轨迹作为样本对网络模型进行训练,解决了原有算法在轨迹多次变更的工况下,重新进行优化引起的时间成本显著增加的问题.实验结果表明:相比普通后置自适应输入整形器,应用带自适应遗忘因子后置输入整形器整形后的轨迹停止后的残余振动幅值平均减小了28.3%,最多的减小36.9%,残余振动收敛时间缩短28.4%.应用基于多层神经网络模型的输入整形器整形后的残余振动幅值相比普通后置自适应输入整形器平均减小了21.6%,最多的减小29.8%,残余振动收敛时间缩短23.7%.本研究提出的算法对于提高多轴伺服系统定位精度、缩短定位等待时间具有一定的应用意义,并且多层神经网络模型的引入在期望轨迹变化频繁的工况下提高了整体工作效率.

多轴伺服系统;后置输入整形器;递归最小二乘;遗忘因子;神经网络

49

TP273.2(自动化技术及设备)

广东省科技计划重点项目2019B040402006

2021-09-14(万方平台首次上网日期,不代表论文的发表时间)

共10页

103-112

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

49

2021,49(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn