基于协同训练的集成自适应GPR-RVM多输出模型研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12141/j.issn.1000-565X.200669

基于协同训练的集成自适应GPR-RVM多输出模型研究

引用
污水处理过程中,由于工艺过程的复杂性、监测设备的不完备性和工作环境的恶劣性,导致重要的出水指标变量难以实现精准的监测;为此,文中提出了一种基于协同训练的集成自适应多输出软测量模型.首先,利用高斯过程回归(GPR)和相关向量机(RVM)两种不同类别的方法建立一个异构的软测量模型;然后,利用移动窗口(MW)和卡尔曼滤波(KF)同步对模型的结构和参数进行实时优化;最后,以一污水厂为对象进行实验,对模型的预测性能和自适应性进行验证.结果 表明,文中提出的方法有效地提高了软测量模型的预测性能和自适应性.

协同训练、软测量模型、高斯过程回归、相关向量机、污水处理

49

TP277(自动化技术及设备)

国家自然科学基金;国家自然科学基金;应用基础研究项目;国家国际科技合作专项基金;中央高校基本科研业务费专项华南理工大学项目

2021-07-15(万方平台首次上网日期,不代表论文的发表时间)

共9页

100-108

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

49

2021,49(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn