基于深度学习的两阶段多假设视频压缩感知重构算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12141/j.issn.1000-565X.200623

基于深度学习的两阶段多假设视频压缩感知重构算法

引用
传统视频压缩感知重构算法重构时延过长,新发展的基于神经网络的视频压缩感知重构算法虽解决了高耗时的问题但未能充分利用视频的时空相关性,重构质量较差.为了解决上述问题,文中提出了基于深度学习的两阶段多假设视频压缩感知重构算法(2sMHNet).首先,采用时域可变形卷积对齐网络实现基于像素的深度学习多假设预测,在避免了块效应的同时通过自适应参数学习提高了假设集的匹配准确性与权重的计算精度,充分地挖掘了时间相关性得到高质量的预测帧;然后,构建残差重构模块以实现预测帧残差的观测域重构,进一步提升重构质量;最后,为了充分利用图像组帧间相关性,提出了两阶段串行式重构模式,在第一阶段利用细节信息丰富的关键帧提升非关键帧重构质量,在第二阶段利用相关性更强的相邻帧再次进行运动补偿重构,适应运动快且复杂的序列.仿真结果证明,2sMHNet相比于目前优秀的视频压缩感知重构算法具有更加优良的重构性能.

视频压缩感知重构算法、深度学习、时域可变形卷积对齐网络、重构性能

49

TP391.41(计算技术、计算机技术)

广东省自然科学基金重点项目;广东省自然科学基金

2021-07-15(万方平台首次上网日期,不代表论文的发表时间)

共12页

88-99

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

49

2021,49(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn