基于多级深度特征与随机游走的显著性检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12141/j.issn.1000-565X.190515

基于多级深度特征与随机游走的显著性检测

引用
为了解决图像显著性检测中传统方法特征学习不全面、 复杂场景下显著区域凸出不明显的问题,提出了一种基于多级深度特征和随机游走的显著性检测算法.首先,利用全卷积神经网络,结合深层和浅层卷积特征信息对图像进行多级卷积深度特征提取;然后,对图像进行超像素分割,将提取的深度卷积特征分配给相应的超像素,构建特征矩阵;最后,通过正则化随机游走排序模型生成最终的显著图.在ECSSD和DUT-OMRON数据库上的实验结果表明,与6种具有代表性的显著性检测算法相比,文中算法的准确性和F值具有一定的优势.

显著性检测、多级深度特征、特征提取、随机游走

48

TP391.4(计算技术、计算机技术)

国家自然科学基金资助项目;河北省自然科学基金资助项目;河北省科技计划项目

2020-09-11(万方平台首次上网日期,不代表论文的发表时间)

共7页

49-55

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

48

2020,48(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn