基于KPCA和改进K-means的电力负荷曲线聚类方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12141/j.issn.1000-565X.200009

基于KPCA和改进K-means的电力负荷曲线聚类方法

引用
为了提高电力负荷曲线聚类精度,文中提出了一种基于核主成分分析(KPCA)和改进K-means算法的电力负荷曲线聚类方法.该方法首先在划分聚类算法K-means基础上融入密度聚类思想,提出了融合密度思想的K-means算法(DK-means算法),并在电力负荷曲线实验集上对比分析其聚类效果;接着在实验集上比较各种降维算法的降维聚类精度和降维速度;最后分析KPCA+DK-means组合算法的降维聚类能力.结果表明,戴维森堡丁指数(DBI)更适合作为电力负荷曲线聚类评价指标;以DBI为评价指标,与K-means、BIRCH、DBSCAN和EnsClust 4种聚类算法相比,DK-means的聚类精度更高;与LLE、MDS、ISOMAP 3种非线性降维算法相比,KPCA的降维速度更快;KPCA+DK-means组合算法有良好的降维聚类能力,较DK-means在聚类精度和聚类效率上均有提升.KPCA+DK-means组合算法可以实现电力负荷曲线的高效降维、精确聚类,对用电行为模式的准确提取起关键技术支持作用.

电力负荷曲线、DK-means算法、核主成分分析、降维、聚类

48

TP301.6(计算技术、计算机技术)

国家自然科学基金资助项目;赛尔网络下一代互联网技术创新项目

2020-07-13(万方平台首次上网日期,不代表论文的发表时间)

共8页

143-150

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

48

2020,48(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn