基于改进Faster R-CNN的路面灌封裂缝检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12141/j.issn.1000-565X.180421

基于改进Faster R-CNN的路面灌封裂缝检测方法

引用
路面灌封裂缝对路面使用寿命的影响较为突出,为了解决目前灌封裂缝检测技术匮乏的问题,文中提出了一种基于改进Faster R-CNN的路面灌封裂缝检测方法.首先,建立灌封裂缝图像集,对采集到的图像进行增广处理,构建路面灌封裂缝标注样本数据集,并将图像集按6:2:2的比例划分为训练集、验证集和测试集;接着,采用Fas-ter R-CNN模型对灌封裂缝进行检测,针对Faster R-CNN检测灌封裂缝存在漏检、定位效果不够理想的问题,文中分别将VGG16、ZFNet和Resnet50网络的特征提取层与Fas-ter R-CNN模型进行结合,结果表明,VGG16和Faster R-CNN结合的模型检测精度最高,达到0.9031;然后,通过增加灌封裂缝候选框宽高比的方法继续改进模型,检测精度达到0.9073,且原先被漏检的目标能被检测出来;最后,对改进Faster R-CNN与YOLOv2模型的检测精度及定位效果进行对比,结果表明,文中提出的改进Faster R-CNN能够明显提高对灌封裂缝的检测准确率和定位精度.

路面病害、灌封裂缝、检测方法、特征提取、多尺度定位、FasterR-CNN、YOLOv2

48

U418.6(道路工程)

国家自然科学基金资助项目;陕西省自然科学基础研究计划-重大基础研究项目;陕西省青年自然科学基金资助项目

2020-04-14(万方平台首次上网日期,不代表论文的发表时间)

共10页

84-93

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

48

2020,48(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn