基于随机森林算法的制冷剂充注量故障诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12141/j.issn.1000-565X.190160

基于随机森林算法的制冷剂充注量故障诊断

引用
制冷剂充注量异常是一种高风险故障,直接影响制冷系统的性能,且其表征参数诸多,难以有效、快速、准确地在线识别.针对上述问题,文中提出了一种基于随机森林(RF)算法的制冷剂充注量故障监测与诊断方法.使用ASHRAE 1999年提供的制冷主机故障数据库,对制冷剂充注量相关的直接测量特征数据进行分析,在保持各特征变量物理意义的前提下,利用随机森林算法研究各故障特征量的贡献率,并在不同样本规模和故障特征量维度的条件下,比较了基于RF、基于支持向量机(SVM)、基于决策树(DT)算法的制冷剂充注量故障诊断效果.结果表明:RF算法具有比较好的识别效率以及较高的分类准确率,平均诊断准确率分别比DT算法、SVM算法提高约3.3%和2.9%.此外,文中还分析了充注量异常诊断贡献率较高的前3个故障特征量,为保证制冷系统运行性能与安全运行提供了理论依据.

故障诊断、制冷剂充注量、随机森林算法、制冷系统

48

TP206+.3(自动化技术及设备)

广东省科技计划项目;广东省自然科学基金资助项目

2020-04-14(万方平台首次上网日期,不代表论文的发表时间)

共9页

16-24

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

48

2020,48(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn