基于云雾结合的工件深度学习识别问题研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12141/j.issn.1000-565X.180161

基于云雾结合的工件深度学习识别问题研究

引用
统工业自动分拣存在工件识别准确率不高、特征定义复杂等问题,虽然新兴的深度学习为此类问题提供了较好的解决方法,但仍存在对边缘端设备计算能力要求较高的问题,为此本文提出一种基于云雾结合的工件识别算法,即在云端采用改进ALEXNET卷积神经网络进行训练,然后将训练好的模型下载到雾(边缘)端设备,对工件进行实时识别.对1 00个不同工件进行实验,结果表明:改进后识别准确率从ALEXNET的98%提高到99%,模型参数减少25%,同时可以充分利用云端的强大计算能力与边缘设备的实时性,为智能工件识别提供了一种新途径.

深度学习、工件识别、云计算、雾计算

47

TP391;TH164(计算技术、计算机技术)

国家自然科学基金资助项目;国家自然科学基金委员会与英国爱丁堡皇家学会合作交流项目;华南理工大学中央高校基本科研业务费资助项目

2020-03-26(万方平台首次上网日期,不代表论文的发表时间)

共8页

1-8

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

47

2019,47(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn