基于深度学习的虚拟到现实车道保持控制
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12141/j.issn.1000-565X.180221

基于深度学习的虚拟到现实车道保持控制

引用
深度学习由于其强大的非线性拟合能力,已经被广泛应用于无人驾驶控制器训练领域.然而,由于其训练过程需要大量标注数据,耗费大量人力物力,且人为采集的数据很难覆盖危险工况,导致训练的模型泛化能力较差,影响了深度学习控制器的性能提升.本研究提出一种从虚拟世界采集样本,将训练模型向真实世界泛化的端对端卷积神经网络(CNN)控制器训练框架.为缩小虚拟和真实世界的差距,本研究以语义分割图像作为媒介,将虚拟和真实图像分别转化为语义分割图像用于训练和测试.结果表明,虚拟到现实训练得到的控制器可以较好地跟随道路变化趋势,经权值微调后预测输出与人类驾驶员操作相近,最大平均绝对误差和均方根误差分别为1.6939°和2.8850°,平均绝对百分比误差在5%以内.

无人驾驶、深度学习、仿真平台、图像分割、车道保持

47

TP181(自动化基础理论)

国家重点研发计划项目2016YFB0100904;国家自然科学基金资助项目U1564211

2019-10-25(万方平台首次上网日期,不代表论文的发表时间)

共8页

90-97

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

47

2019,47(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn