一种结合词性及注意力的句子情感分类方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12141/j.issn.1000-565X.180486

一种结合词性及注意力的句子情感分类方法

引用
针对目前各种基于长短期记忆网络LSTM的句子情感分类方法没有考虑词的词性信息这一问题,将词性与自注意力机制相结合,提出一种面向句子情感分类的神经网络模型PALSTM (Pos and Attention-based LSTM).首先,结合预训练词向量和词性标注工具分别给出句子中词的语义词向量和词性词向量表示,并作为LSTM的输入用于学习词在内容和词性方面的长期依赖关系,有效地弥补了一般LSTM单纯依赖预训练词向量中词的共现信息的不足;接着,利用自注意力机制学习句子中词的位置信息和权重向量,并构造句子的最终语义表示;最后由多层感知器进行分类和输出.实验结果表明,PALSTM在公开语料库Movie Reviews、Internet Movie Database和Stanford Sentiment Treebank二元分类及五元情感上的准确率均比一般的LSTM和注意力LSTM模型有一定的提升.

自然语言处理、情感分类、神经网络、词性、自注意力

47

TP183(自动化基础理论)

广东省科技厅应用型科技研发专项资金项目20168010124010;广东省自然科学基金资助项目2015A030310318;广东省医学科学技术研究基金项目A2015065

2019-10-12(万方平台首次上网日期,不代表论文的发表时间)

共9页

10-17,30

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

47

2019,47(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn