单词和字符表示的协同学习
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-565X.2018.08.017

单词和字符表示的协同学习

引用
当前的词嵌入模型多数基于分布假设理论,这类模型将单词作为最基本语义单元,然后利用词的外部上下文信息学习词表示.然而,在类似于汉语的语言中,单词经常由多个字符组成,这些字符包含了丰富的内部信息,同时单词的语义也和这些字符的语义息息相关.考虑到当前常用词模型均忽略了字符信息,文中以中文为例,提出了单词与字符表示的协同学习模型.为了解决汉语中存在的单字符多语义和多字符单语义情况,文中提出了基于多原型的单词协同学习模型,并使用词相似任务和类比推理任务对该模型进行评估.结果显示,文中模型的词表示质量均优于其他词嵌入模型.

词表示、外部上下文、内部信息、协同学习

46

TP391(计算技术、计算机技术)

国家自然科学基金资助项目61202227;安徽省高等学校自然科学研究项目KJ2018A00B

2019-01-22(万方平台首次上网日期,不代表论文的发表时间)

共8页

122-129

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

46

2018,46(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn