基于C3D和视觉元素的视频描述
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-565X.2018.08.013

基于C3D和视觉元素的视频描述

引用
随着深度学习技术的发展,利用卷积神经网络(CNN)提取视频帧特征,再用循环神经网络(RNN)生成句子的方法被广泛用于视频描述任务中.然而,这种直接转换方式忽略了很多视频内在信息,如视频序列的时序信息、运动信息及丰富的视觉元素信息等.为此,文中提出了一种基于自适应帧循环填充法的多模态视频描述(AFCF-MVC)模型;采用自适应特征提取法提取含有丰富时空信息和运动信息的视频C3D特征,使得C3D特征包含了整个视频序列所有帧的信息,并将其作为神经网络的输入;针对不同视频的标注句子长度不同问题,提出了自适应帧循环填充法,即根据标注句子的长度自适应地控制输入特征的个数,在保证句子输入完整的前提下为神经网络提供尽可能多的特征输入,并起到重复学习的作用;为了充分利用视频丰富的视觉元素信息,通过视觉检测器检测出视频帧的视觉元素信息,编码后作为额外的补充信息融合进AFCF-MVC模型中.在M-VAD和MPII-MD数据集上的实验结果显示,该模型既能准确地描述视频中的内容,也能在语法结构上模拟出人类语言的丰富性.

深度学习、卷积神经网络、循环神经网络、视频描述、自适应、视觉元素

46

TP391(计算技术、计算机技术)

国家自然科学基金资助项目61671213;广州市人体数据科学重点实验室项目201605030011

2019-01-22(万方平台首次上网日期,不代表论文的发表时间)

共8页

88-95

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

46

2018,46(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn