基于组稀疏残差约束的自适应强噪声图像复原算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-565X.2018.08.002

基于组稀疏残差约束的自适应强噪声图像复原算法

引用
组稀疏学习在图像去噪中显示出巨大的潜力,但现有方法仅从图像块级别考虑含噪图像的非局部自相似性,影响了强噪声图像的重建质量.文中在组稀疏复原模型中引入组稀疏残差和全变分正则化约束,将含噪图像复原问题转化为多尺度图像块匹配和减小组稀疏残差;基于干净图像的组稀疏系数预估和多尺度图像块匹配,提出了自适应图像复原迭代算法,以提升组稀疏学习算法的图像去噪和精细结构复原能力.实验结果表明,文中算法能更好地保留图像的细节纹理,减少过平滑和伪影现象,在强噪声图像复原的主、客观综合评价上优于BM3D、WNNM等标杆去噪算法.

图像去噪、强噪声图像、组稀疏残差、自适应正则化算法、非局部自相似性、多尺度图像块匹配

46

TP391.4(计算技术、计算机技术)

国家自然科学基金资助项目61403146,61603105;广州市科技计划项目201707010054,201704030072;华南理工大学中央高校基本科研业务费专项资金资助项目2015ZM128

2019-01-22(万方平台首次上网日期,不代表论文的发表时间)

共8页

11-18

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

46

2018,46(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn