基于深度卷积神经网络的图像哈希认证方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-565X.2018.05.008

基于深度卷积神经网络的图像哈希认证方法

引用
提出了一种基于深度卷积神经网络的图像哈希认证方法.首先构建深度卷积神经网络AlexNet模型,训练该网络得到预定的网络性能;然后由训练好的卷积神经网络提取图像的特征,最后生成图像哈希序列用于图像内容的篡改认证.实验结果表明,相比同类方法,文中提出的图像哈希认证方法具有较高的区分性,同时对随机攻击、JPEG压缩、加性高斯噪声等具有可接受的鲁棒性.ROC曲线表明,文中提出的方法实现了区分性与鲁棒性的均衡.

信息安全、卷积神经网络、图像哈希、区分性、鲁棒性

46

TP309.7(计算技术、计算机技术)

国家自然科学基金资助项目61371150

2019-01-03(万方平台首次上网日期,不代表论文的发表时间)

共7页

53-59

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

46

2018,46(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn