深度残差网络JPEG隐写分析器的特性
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-565X.2018.05.006

深度残差网络JPEG隐写分析器的特性

引用
传统的隐写分析技术采用富模型特征,通过集成分类器获得了较高的检测性能.深度学习框架在隐写分析领域展现出了比传统方法更强大的检测性能.已有研究表明,深度残差网络类似于集成分类器.为确认基于深度残差网络的隐写分析器徐氏网络是否具有上述特性,考虑到徐氏网络不足够深,文中采用瓶颈架构和组件复制两种方式分别对徐氏网络进行拓展,得到了4个变种——瓶颈网络、30层网络、40层网络和50层网络,并进行了3组实验——第1组实验通过训练徐氏网络及其4个变种网络,获得最优的模型,发现更深的网络并没有比徐氏网络的性能更好;第2组实验通过删除个别组件,证明了残差网络中的路径并不依赖于彼此;第3组实验通过置乱一些组件,发现残差网络在一定程度上可以重新配置.实验结果表明,徐氏网络也类似于集成分类器.

图像隐写、残差网络、集成分类器、深度学习

46

TP309.7(计算技术、计算机技术)

国家自然科学基金资助项目61772349,61572329

2019-01-03(万方平台首次上网日期,不代表论文的发表时间)

共8页

39-46

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

46

2018,46(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn