基于烟花算法降维的高光谱图像分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-565X.2017.03.003

基于烟花算法降维的高光谱图像分类

引用
为降低高光谱数据量及计算复杂度,避免后续分类中的Hughes现象,提出一种基于烟花算法降维的高光谱图像分类方法.烟花算法采用类内紧密性系数与类间分离性系数的加权和作为波段选择的度量准则,通过在高光谱数据空间内进行搜索,不断更新直至收敛,从而获得最优波段组合.基于印第安纳数据集(AVIRIS)和帕维亚大学数据集(ROSIS)数据对烟花算法、遗传算法和禁忌搜索算法进行波段选择的仿真实验,结果表明:烟花算法选择出的波段组合数目相对较少,具有较低的算法复杂度,减少了耗时;利用获得的波段组合进行高光谱图像分类时,与遗传算法、禁忌搜索算法的波段选择方法相比,文中所提方法在总体分类精度和Kappa系数上分别提高0.06%~4.72%和0.00~0.09,可以得到令人满意的分类结果.

图像分类、高光谱图像、降维、烟花算法、智能优化算法

45

TP751(遥感技术)

国家自然科学基金资助项目61675051;教育部博士点基金资助项目20132304110007;黑龙江省博士后特别资助项目LBH-TZ0420 Supported by the National Natural Science Foundation of China 61675051;the Ph.D.Programs Foundation of Ministry of Education of China20132304110007;the Heilongjiang Postdoctoral Special FundLBH-TZ0420

2017-07-06(万方平台首次上网日期,不代表论文的发表时间)

共9页

20-28

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

45

2017,45(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn