基于时空特性的短时交通流预测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-565X.2014.07.008

基于时空特性的短时交通流预测模型

引用
根据交通流的历史周期性和空间相关性,文中综合SARIMA模型在历史周期性预测上的优势和RBF模型在空间相关性预测上的优势,提出了SARIMA-RBF模型。该模型采用SARIMA模型通过历史数据预测下一时刻的交通流,然后将预测值与该点上下游关联的交通流数据相结合,采用RBF神经网络模型得出输出值,并将该输出值作为SARIMA-RBF模型对下一时刻交通流的预测结果。实验结果表明,该模型因同时考虑了交通流的历史周期性和空间相关性,相比SARIMA模型和RBF模型具有更好的交通流预测效果。

短时交通流预测、SARIMA模型、RBF神经网络、历史周期性、空间相关性

TP301.6(计算技术、计算机技术)

国家“863”计划项目2014AA110302

2014-11-13(万方平台首次上网日期,不代表论文的发表时间)

共6页

49-54

相关文献
评论
相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn