高速公路旅行时间的自适应插值卡尔曼滤波预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-565X.2014.02.017

高速公路旅行时间的自适应插值卡尔曼滤波预测

引用
为解决高速公路收费站间非平稳交通流状态下因卡尔曼滤波算法自适应性能差而导致的旅行时间预测精度不稳定的问题,提出等间距插值和Sage-Husa自适应卡尔曼滤波相结合的预测算法。融合人工半自动收费和电子不停车收费数据计算平均旅行时间;引入等间距插值方法重构实时与历史旅行时间之间的时间序列;利用最小二乘法原理构建Sage-Husa自适应预测模型;开发旅行时间预测应用系统,实时主动预测高速公路站间旅行时间。在某示范路段的应用表明:在正常、事故、小长假3种交通流状态下,所提方法的所有周期平均相对误差均在7.5%内,事故周期平均相对误差均在10%内.

高速公路旅行时间、收费数据、等间距插值、Sage-Husa自适应卡尔曼滤波

U491.1(交通工程与公路运输技术管理)

国家“十一五”科技支撑计划项目2011BAG07B05-2;北京市首都公路发展集团有限公司科研课题H120508

2014-05-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

109-115

相关文献
评论
相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn