基于PSO-FCM算法的同调发电机识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-565X.2013.04.002

基于PSO-FCM算法的同调发电机识别

引用
针对同调动态等值法中的同调发电机分群问题,提出了基于粒子群优化(PSO)的模糊c均值聚类(FCM)算法来识别同调发电机.该算法将聚类中心数作为粒子进行编码,利用粒子群优化的并行性和全局搜索能力,通过不断更新粒子的速度和位置实现寻优,克服了模糊c均值聚类对初值的依赖和易陷入局部极值的缺点.文中还构造了聚类有效性函数来进行聚类效果的评价.IEEE10机39节点系统仿真表明,该算法具有快速、准确、简单、易实现的特点,有效解决了同调发电机的识别问题,可用于电力系统不同运行方式下同调发电机的分群.

同调发电机、动态等值、粒子群优化、模糊c均值聚类、聚类有效性

41

TM744(输配电工程、电力网及电力系统)

国家"863"计划项目2011AA05A102

2013-07-11(万方平台首次上网日期,不代表论文的发表时间)

共6页

8-13

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

41

2013,41(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn