采用经验复用的高效强化学习控制方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-565X.2012.06.012

采用经验复用的高效强化学习控制方法

引用
使用定长情景进行学习的eNAC(episodic Natural Actor-Critic)算法是一种在理论上具有良好学习性能的强化学习控制算法,但其学习过程需要采样较多的定长情景,学习效率低.为此,文中提出了一种新的强化学习控制算法ER-eNAC.该算法在eNAC算法的基础上引入了定长情景复用机制,在自然策略梯度估计过程中,复用部分过去采样的定长情景以更有效地利用经验信息;在使用复用的定长情景时,按照其参与的策略更新次数进行指数递减加权以描述其对当前策略的适用性.倒立摆稳定控制问题的仿真结果表明,与eNAC算法相比,ER-eNAC算法显著减少了学习过程中需要采样的定长情景的条数,提高了学习效率.

强化学习、自然策略梯度、经验复用、倒立摆控制

40

TP273.22(自动化技术及设备)

国家自然科学基金青年科学基金资助项目61004066;浙江省科技计划项目2011C23106

2012-10-29(万方平台首次上网日期,不代表论文的发表时间)

共6页

70-75

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

40

2012,40(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn