基于小波Elman神经网络的活塞环渗氮质量预测控制
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3321/j.issn:1000-565X.2009.02.009

基于小波Elman神经网络的活塞环渗氮质量预测控制

引用
针对活塞环渗氮硬化工序建模困难的情况,通过主成分分析法(PCA)提取氮化工序特征参数,降低了质量模型输入样本维数,建立了基于小波Elman神经网络的活塞环制造关键工序的质量预测模型,实现了工序过程质量波动趋势的预测,为后续的工艺优化和质量改进奠定了基础.结果表明,文中方法可以有效地改进渗氮硬化工序的质量控制,所建立的质量预测模型对输出质量特征值的预测准确率达到89%,具有比标准Elman网络更好的预测精度和收敛速度.

活塞环、渗氮硬化、主成分分析法、Elman神经网络、小波神经网络、质量预测

37

TP321(计算技术、计算机技术)

广东省科技计划项目2005B10201039;广州市科技计划项目2007Z3-D0141

2009-04-24(万方平台首次上网日期,不代表论文的发表时间)

共4页

45-48

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

37

2009,37(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn