基于EMD关联维的齿轮箱齿轮状态振动辨识
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3321/j.issn:1000-565X.2004.08.010

基于EMD关联维的齿轮箱齿轮状态振动辨识

引用
论述了经验模式分解(EMD)的理论和特性,以及关联维数及其特性,并根据实际齿轮箱振动信号的非平稳特征和简单监测征兆的需要,引入分别适于非线性非平稳信号分析和表征系统观测序列非线性、不规则程度的经验模式分解和关联维数,提出用EMD关联维来辨识齿轮箱振动信号.结果表明:当齿轮处于不同状态时,与齿轮故障密切相关的内在模式函数的关联维数明显不同,EMD关联维方法可以作为齿轮故障的特征提取工具.

齿轮、故障诊断、经验模式分解、关联维

32

TP206;TN911.7(自动化技术及设备)

华南理工大学校科研和教改项目E5305248

2004-10-09(万方平台首次上网日期,不代表论文的发表时间)

共4页

38-41

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

32

2004,32(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn