Black-Scholes方程的Legendre有理拟谱方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1003-4978.2015.06.003

Black-Scholes方程的Legendre有理拟谱方法

引用
利用变量代换,将带有渐近边界条件的终值Black-Scholes期权定价问题转化为抛物型对流扩散方程的初边值问题,接着构造了该等价问题的弱形式,并建立了相应的半离散Legendre有理拟谱格式.最后,利用Legendre有理正交投影和Legendre-Gauss有理插值逼近结果分析了数值格式的收敛性,并证明了该数值方法在空间方向具有谱精度.本文尽管只考虑了Black-Scholes模型问题,但是构造数值格式和分析收敛性的方法和技巧可以推广到其他线性和非线性问题.

Black-Scholes方程、Legendre有理拟谱方法、收敛性分析

45

O241.82(计算数学)

国家自然科学基金;国家自然科学基金;上海市高等学校青年教师培养资助计划

2015-12-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

640-645

相关文献
评论
暂无封面信息
查看本期封面目录

河南大学学报(自然科学版)

1003-4978

41-1100/N

45

2015,45(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn