10.3969/j.issn.1002-0640.2023.02.003
基于稀疏约束与双线索选择的目标跟踪算法
为了解决现有DCF类跟踪器存在边界效应及时间滤波器退化的问题,进一步增强其在复杂场景下跟踪的准确性,基于LADCF算法,提出了一种有效的双线索目标跟踪框架,用于鲁棒视觉跟踪.将结构化稀疏约束应用到多通道滤波器,并通过提取9维HOG特征与11维CN特征构建新的跟踪线索,与原有线索协同跟踪目标.建立可靠性评估策略,在每一帧中选择合适的线索进行跟踪.在OTB-50、OTB-100基准数据集上进行了定性和定量评价,实验结果表明,所提出的方法跟踪准确度相比LADCF算法提升了2.4豫,相比ECO_HC提升了3.7豫,优于现有的主流跟踪算法,且跟踪速度达到21.1帧/s,可以实现实时跟踪.
双线索选择、目标跟踪、稀疏约束、可靠性评估
48
TP391.4(计算技术、计算机技术)
国家自然科学基金;江苏省自然科学基金;泰州职业技术学院重点科研项目
2023-04-14(万方平台首次上网日期,不代表论文的发表时间)
共7页
19-25