基于多尺度特征融合的航空发动机剩余寿命预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13477/j.cnki.aeroengine.2024.04.016

基于多尺度特征融合的航空发动机剩余寿命预测

引用
针对航空发动机原始数据中存在多样化退化信息及大量噪声干扰的问题,建立了一种基于多尺度特征融合的发动机剩余可用寿命(RUL)预测模型.构建了一种基于统计量的方法来降低原始数据中的噪声干扰;基于卷积双向长短期记忆网络(ConvBiLSTM)和多头注意力机制(Multi-Attention)设计了加权时空特征提取模块(WSTFEM);采用多尺度学习策略,构建多尺度卷积双向长短期记忆网络(MCBLSTM)提取数据在不同时间尺度下的加权时空特征;提取数据手工特征为RUL预测提供具有针对性和解释性的退化信息;将上述特征进行特征融合后输入至全连接网络获得RUL预测值.以FD004子集为例,使用C-MAPSS数据集对模型进行仿真试验验证.结果表明:MCBLSTM模型在4个子数据集上RUL预测精度更高.相较于BiLSTM,均方根误差减小了20.35%,非对称评分函数下降了54.76%.

深度学习、多头注意力机制、多尺度卷积双向长短期记忆网络、剩余可用寿命、航空发动机

50

V235.13(航空发动机(推进系统))

国家自然科学基金;中央高校基本科研业务专项;中央高校基本科研业务专项

2024-09-02(万方平台首次上网日期,不代表论文的发表时间)

共7页

114-120

相关文献
评论
暂无封面信息
查看本期封面目录

航空发动机

1672-3147

21-1359/V

50

2024,50(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn