标签噪声鲁棒学习算法研究综述
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12132/ISSN.1673-5048.2020.0010

标签噪声鲁棒学习算法研究综述

引用
在机器学习领域,监督学习算法在理论层面和工程应用中均取得了丰硕的成果,但此类算法的效果严重依赖训练样本的标签质量,在实际问题中获取具有高质量标签的训练样本通常费时费力.为节省人力物力,网络爬虫、众包方法等替代方法被用于对训练数据的采集.不幸的是,这些替代方法获取的数据往往存在大量的错误标注,即标签噪声,由此带来了很多潜在的问题.因此,对标签噪声鲁棒学习算法的研究,在推广机器学习工程应用、降低机器学习算法部署成本方面具有重要的意义.本文对标签噪声鲁棒学习算法的最新研究成果进展进行了全面综述,分别从标签噪声的产生、影响、分类等方面进行了详细的总结,对每类标签噪声的处理方法进行了介绍,并对每类处理方法的优缺点进行分析.

人工智能、机器学习、弱监督学习、标签噪声、深度学习、鲁棒学习算法

27

TJ760;TP18(火箭、导弹)

国家自然科学基金;江苏省自然科学基金

2020-08-28(万方平台首次上网日期,不代表论文的发表时间)

共7页

20-26

相关文献
评论
暂无封面信息
查看本期封面目录

航空兵器

1673-5048

41-1228/TJ

27

2020,27(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn