基于Wavelet-LSTM模型的北京空气污染物浓度预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19672/j.cnki.1003-6504.2019.08.020

基于Wavelet-LSTM模型的北京空气污染物浓度预测

引用
文章为了达到精准预测北京市空气污染物浓度目的,应用小波分解变换(wavelet transform)和长短期神经记忆网络(long short-term memory,LSTM)相结合的方法,建立Wavelet-LSTM空气污染物浓度预测模型,对北京市6项空气污染物浓度预测.研究首先通过小波分解变换将日空气污染物浓度的历史时间序列分解为不同频率并重新组合为高维训练数据集合;其次使用高维数据集训练LSTM预测模型,重复试验调整参数,获得最优预测模型.研究结果表明,组合模型对于污染物浓度预测比传统LSTM模型的预测精度和稳定性更高.

长短期神经记忆网络、小波变换、空气污染物浓度、预测

42

X823(环境质量分析与评价)

天津市教委社会科学重大项目2017JWZD16

2019-12-31(万方平台首次上网日期,不代表论文的发表时间)

共8页

142-149

相关文献
评论
暂无封面信息
查看本期封面目录

环境科学与技术

1003-6504

42-1245/X

42

2019,42(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn