10.11872/j.issn.1005-2518.2022.06.081
基于PCA-RBF网络模型的硫化矿自燃安全性研究
为了更加准确地预测硫化矿自燃安全性,综合考虑硫化矿自燃倾向性及火灾后果严重性,将硫化矿自燃安全性划分为9个等级,并选取矿山含硫量、矿山含碳量、矿石温度、矿石堆放时间、采场人员数量、氧气浓度和采场矿层厚度作为评价因素集.利用主成分分析法(Principal Component Analysis,PCA)对94个采场样本数据进行降维处理,得到包含70%以上原始信息的3个主成分.将降维后的84组数据作为基于径向基函数神经网络(Radial Basis Function Neural Network,RBF)预测模型的训练样本,10组数据作为检验样本进行硫化矿自燃安全性预测.最后分别利用十折交叉验证法和留一法对94组检验样本的自燃安全性预测结果进行检验,得到硫化矿自燃安全性预测准确率分别为92.55%和91.49%.研究结果表明:PCA-RBF网络模型对硫化矿自燃安全性的预测性能良好,且优于未经主成分分析的结果.
硫化矿、自燃倾向性、火灾后果、主成分分析、RBF神经网络、等级预测
30
X936(安全工程)
国家自然科学基金51404305
2023-01-16(万方平台首次上网日期,不代表论文的发表时间)
共10页
958-967