基于轻量级梯度提升机的南京大气臭氧浓度预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13227/j.hjkx.202208095

基于轻量级梯度提升机的南京大气臭氧浓度预测

引用
采用南京地区2015年1月至2016年12月期间的空气质量数据和常规气象资料数据,分析了南京地区O3浓度变化特征,建立基于轻量级梯度提升机(LightGBM)的O3浓度预测模型,并将该模型与支持向量机、循环神经网络和随机森林等3种在空气质量预测方向上常用的机器学习方法进行了对比,验证模型的有效性和可行性.结果表明,南京地区O3浓度变化具有显著的季节性差异,浓度变化受前期浓度、气象因子和其他空气污染物浓度的共同影响.LightGBM模型较为准确地预测了南京地区地面O3浓度(R2=0.92),且该模型的预测精度和计算效率等性能优于其他模型.尤其是在容易出现臭氧污染的高温天气,该模型预测准确性明显高于其他模型,模型稳定性较好.LightGBM具有预测准确度高、稳定性好、有良好的泛化能力和运算时间短等特点,在O3浓度预测方面具有显著的优势.

轻量级梯度提升机(LightGBM)、地面臭氧、臭氧浓度预测、随机森林(RF)、循环神经网络(RNN)

44

X515(大气污染及其防治)

国家自然科学基金;国家重点研发计划;江苏省高校青蓝工程项目

2023-07-21(万方平台首次上网日期,不代表论文的发表时间)

共10页

3685-3694

相关文献
评论
暂无封面信息
查看本期封面目录

环境科学

0250-3301

11-1895/X

44

2023,44(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn