基于iLME+Geoi-RF模型的四川省PM2.5浓度估算
高分辨率PM2.5空间分布数据对动态监测和控制PM2.5污染具有重要意义.选取Himawari-8气溶胶光学厚度(AOD)、ERA5气象再分析资料、DEM、土地利用数据、夜光遥感数据、增强型植被指数和人口数据等作为估算变量,使用改进的重采样法进行数据匹配,并提出改进的线性混合模型(iLME)结合地理智能随机森林(Geoi-RF)构建组合模型估算PM2.5浓度.结果表明:①在选取的估算变量中,气溶胶光学厚度、气压、温度、相对湿度和边界层高度是影响2016年四川省PM2.5浓度的重要因素,其相关系数分别为0.65、0.58、0.55、0.54和0.35.②iLME+Geoi-RF模型精度相较其他模型有较大提升,模型拟合Rl2、RMSR 和 MAE 分别为0.98、3.25 μg·m-3和 1.98 μg·m-3,交叉验证 R2、RMSR 和 MAE 分别为0.89、7.95 μg·m-3和4.81μg·m-3.该模型可获取更高精度的四川省PM2.5时空分布特征,为区域空气质量评估、人体暴露风险评价和环境污染治理提供更加合理地科学参考.③2016年四川省PM2.5浓度存在显著的季节性差异,各季节PM2.5浓度大小关系为:冬季>秋季>春季>夏季.2016年四川省月均PM2.5浓度总体上呈先降后升的"V"型趋势,最小值在6月,最大值在12月,8月和11月有微小起伏.在空间分布上四川省PM2.5浓度总体上呈东高西低和局部污染程度较高的特点,高值区主要分布在城市快速发展和人口密集的东部地区,低值区主要分布在经济发展落后和人口稀疏的西部地区.④虽然不同模型估算出的PM2.5浓度整体分布基本一致,但iLME+Geoi-RF模型能更准确有效地估算本研究区污染的空间分布.
PM2.5;Himawari-8 AOD;重采样;共线性诊断;iLME+Geoi-RF模型;时空变化
42
X513(大气污染及其防治)
国家自然科学基金41901225
2022-02-17(万方平台首次上网日期,不代表论文的发表时间)
共14页
5602-5615