基于iLME+Geoi-RF模型的四川省PM2.5浓度估算
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13227/j.hjkx.202102048

基于iLME+Geoi-RF模型的四川省PM2.5浓度估算

引用
高分辨率PM2.5空间分布数据对动态监测和控制PM2.5污染具有重要意义.选取Himawari-8气溶胶光学厚度(AOD)、ERA5气象再分析资料、DEM、土地利用数据、夜光遥感数据、增强型植被指数和人口数据等作为估算变量,使用改进的重采样法进行数据匹配,并提出改进的线性混合模型(iLME)结合地理智能随机森林(Geoi-RF)构建组合模型估算PM2.5浓度.结果表明:①在选取的估算变量中,气溶胶光学厚度、气压、温度、相对湿度和边界层高度是影响2016年四川省PM2.5浓度的重要因素,其相关系数分别为0.65、0.58、0.55、0.54和0.35.②iLME+Geoi-RF模型精度相较其他模型有较大提升,模型拟合Rl2、RMSR 和 MAE 分别为0.98、3.25 μg·m-3和 1.98 μg·m-3,交叉验证 R2、RMSR 和 MAE 分别为0.89、7.95 μg·m-3和4.81μg·m-3.该模型可获取更高精度的四川省PM2.5时空分布特征,为区域空气质量评估、人体暴露风险评价和环境污染治理提供更加合理地科学参考.③2016年四川省PM2.5浓度存在显著的季节性差异,各季节PM2.5浓度大小关系为:冬季>秋季>春季>夏季.2016年四川省月均PM2.5浓度总体上呈先降后升的"V"型趋势,最小值在6月,最大值在12月,8月和11月有微小起伏.在空间分布上四川省PM2.5浓度总体上呈东高西低和局部污染程度较高的特点,高值区主要分布在城市快速发展和人口密集的东部地区,低值区主要分布在经济发展落后和人口稀疏的西部地区.④虽然不同模型估算出的PM2.5浓度整体分布基本一致,但iLME+Geoi-RF模型能更准确有效地估算本研究区污染的空间分布.

PM2.5;Himawari-8 AOD;重采样;共线性诊断;iLME+Geoi-RF模型;时空变化

42

X513(大气污染及其防治)

国家自然科学基金41901225

2022-02-17(万方平台首次上网日期,不代表论文的发表时间)

共14页

5602-5615

相关文献
评论
暂无封面信息
查看本期封面目录

环境科学

0250-3301

11-1895/X

42

2021,42(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn