利用多元线性回归方法评估气象条件和控制措施对APEC期间北京空气质量的影响
气象条件对大气污染物的扩散和传输有重要影响,准确分离和定量气象因素对空气质量的影响是评估大气污染控制政策有效性的前提.本研究利用APEC会议期间及前后(2014-10-15~ 2014-11-30)北京城区朝阳观测站点SO2、NO、NO2、NOx、CO、PM2.5、PM1和PM10以及气象因素的观测数据,采用多元线性回归分析方法,定量评估了气象条件和空气污染控制措施对APEC期间北京空气质量的影响.在假定排放条件不变的情况下,基于气象因素参数建立的预测污染物浓度的多元线性回归模型模拟效果较为理想,决定系数R2在0.494~0.783之间.控制措施使得APEC控制期SO2、NO、NO2、NOx、CO、PM2.5、PM1和PM10浓度分别降低48.3%、53.5%、18.7%、40.6%、3.6%、34.8%、28.8%和40.6%,气象因素使得APEC控制期SO2、NO、NO2、NOx、CO、PM2.5、PM1和PM10浓度分别降低1.7%、-2.8%、18.7%、4.5%、18.6%、27.5%、30.6%和35.6%.气象因素和控制措施共同作用使得APEC控制期北京空气质量得到了明显改善.控制措施对SO2和氮氧化物浓度的下降起主导作用,气象因素对CO浓度的下降起主导作用,气象因素和控制措施对颗粒物浓度降低的贡献相当.本研究还利用相对权重方法研究了气象因素对污染物浓度影响的贡献,结果表明影响不同污染物浓度的决定性气象因素不同.
多元线性回归方法、相对权重方法、气象条件、控制措施、APEC会议
40
X51(大气污染及其防治)
国家自然科学基金项目41475135,41571130024,91744101;北京市科技新星计划项目xx2017079;国家级气象科研院所基本科研业务费专项IUMKY201733
2019-06-10(万方平台首次上网日期,不代表论文的发表时间)
共11页
1024-1034