基于组合模型的PM2.5浓度预测及其不确定性分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13205/j.hjgc.202008038

基于组合模型的PM2.5浓度预测及其不确定性分析

引用
运用GIS软件及克里金(Kriging)插值等方法分析合肥城市圈PM2.5浓度的时空分布,根据合肥市环境监测历史数据、地面气象站点数据及历史气象数据,采用多元回归分析、相关分析等方法,研究合肥市PM2.5浓度的影响因素.结果 表明:1)PM2.5浓度整体变化情况为冬季>秋季>春季>夏季,大部分城市PM2.5浓度峰值出现在1月,之后浓度开始逐渐下降,7月达到最低值,此后浓度逐渐升高.2)PM2.5浓度与CO呈高度正相关,相关系数高达0.875;与PM10、SO2、NO2的相关性也较高;与O3呈负相关.PM2.5浓度与气压、风速、降雨量以及能见度呈负相关,与温度、相对湿度呈强正相关.基于2018—2019年合肥市地面站点PM2.5浓度监测数据,构建预测PM2.5浓度的组合模型:对比三次指数平滑模型,确定模拟退火+遗传+三次指数平滑为优组合模型,拟合度达到95%.通过Kappa及MAPE指数对组合模型不确定性进行分析评价,两者分别为0.654和0.072,说明该模型具有高度稳定性.恰当的预测因子组合和模型不确定性研究有助于模型预测精度的提升和改善,从而为大气环境质量监测和评价提供参考.

PM2.5浓度、时空分布、预测、组合模型、不确定性分析

38

国家重点基础研究发展计划;安徽省教育厅重点科研项目

2020-10-20(万方平台首次上网日期,不代表论文的发表时间)

共7页

229-235

相关文献
评论
暂无封面信息
查看本期封面目录

环境工程

1000-8942

11-2097/X

38

2020,38(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn