基于卷积神经网络的HL-2A装置H模辨识研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16568/j.0254-6086.2022s1012

基于卷积神经网络的HL-2A装置H模辨识研究

引用
基于HL-2A装置的放电实验数据,利用卷积神经网络和时间窗口算法开发了高约束(H)模时段的识别算法,得到了可靠的高成功率的高约束模时段识别结果.算法中,选取206次放电实验数据中等离子体储能及氘α通道信号作为双通道原始数据进行学习,得到一个深度为21层的二分类卷积神经网络.该网络模型经过其他474次放电数据的测试集检验,高约束模识别的正确率达到了98.17%.

HL-2A装置、高约束模、卷积神经网络、模式识别

42

TL62+2(受控热核反应(聚变反应理论及实验装置))

政府间国际科技创新合作专项;国家基础科学人才拔尖计划

2022-05-25(万方平台首次上网日期,不代表论文的发表时间)

共6页

164-169

相关文献
评论
暂无封面信息
查看本期封面目录

核聚变与等离子体物理

0254-6086

51-1151/TL

42

2022,42(z1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn