PPLS与稀疏鉴别流形正则化的双模型协同宽度神经网络
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.2096-8248.2023.01.011

PPLS与稀疏鉴别流形正则化的双模型协同宽度神经网络

引用
宽度神经网络(broad neural networks,BNN)被认为是继深度神经网络之后的一种主流机器学习算法,然而BNN没有考虑数据不确定性及局部几何结构信息.为此,提出概率偏最小二乘(probabilistic partial least square,PPLS)与稀疏鉴别流形正则化的双模型协同宽度神经网络建模方法.该方法首先使用PPLS对BNN输入特征以及增强特征构成的高维数据提取低维隐藏变量,消除数据不确定信息以及冗余特征;基于稀疏表示方法自适应构建样本局部与非局部近邻矩阵,并结合PPLS模型投影矩阵,提出一种新颖的融合模型信息迁移、鉴别流形正则化以及l2,p-范数约束的BNN建模方法,有效增强BNN模型的鲁棒性、建模精度,同时消除数据的随机不确定性;最后给出迭代优化求解方法获取模型最优参数.在不同规模数据集、不同光照和角度图像数据集对所提算法进行仿真验证,结果表明该算法对不同规模数据集均能取得满意的效果;对图像数据集仿真结果表明其具有很强的鲁棒性和泛化性能.

概率偏最小二乘、稀疏表示、鉴别流形正则化、宽度神经网络、l2、p-范数

32

TP18(自动化基础理论)

2023-06-09(万方平台首次上网日期,不代表论文的发表时间)

共9页

88-96

相关文献
评论
暂无封面信息
查看本期封面目录

江苏海洋大学学报(自然科学版)

2096-8248

32-1892/N

32

2023,32(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn