基于改进ELM的递归最小二乘时序差分强化学习算法及其应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11949/j.issn.0438-1157.20161555

基于改进ELM的递归最小二乘时序差分强化学习算法及其应用

引用
针对值函数逼近算法对精度及计算时间等要求,提出了一种基于改进极限学习机的递归最小二乘时序差分强化学习算法.首先,将递推方法引入到最小二乘时序差分强化学习算法中消去最小二乘中的矩阵求逆过程,形成递推最小二乘时序差分强化学习算法,减少算法的复杂度及其计算量.其次,考虑到LSTD(0)算法收敛速度慢,加入资格迹增加样本利用率提高收敛速度的算法,形成LSTD(λ)算法,以保证在经历过相同数量的轨迹后能收敛于真实值.同时,考虑到大部分强化学习问题的值函数是单调的,而传统ELM方法通常运用具有双侧抑制特性的Sigmoid激活函数,增大了计算成本,提出采用具有单侧抑制特性的Softplus激活函数代替传统Sigmoid函数,以减少计算量提高运算速度,使得该算法在提高精度的同时提高了计算速度.通过与传统基于径向基函数的最小二乘强化学习算法和基于极限学习机的最小二乘TD算法在广义Hop-world问题的对比实验,比较结果证明了所提出算法在满足精度的条件下有效提高了计算速度,甚至某些条件下精度比其他两种算法更高.

强化学习、激活函数、递归最小二乘算法、函数逼近、广义Hop-world问题

68

TP29(自动化技术及设备)

国家自然科学基金项目61573051,61472021;软件开发环境国家重点实验室开放课题SKLSDE-2015KF-01;中央高校基本科研业务费专项资金项目PT1613-05. supported by the National Natural Science Foundation of China61573051, 61472021;the Open Fund of the State Key Laboratory of Software Development EnvironmentSKLSDE-2015KF-01;the Fundamental Research Funds for Central Universities of ChinaPT1613-05

2017-04-19(万方平台首次上网日期,不代表论文的发表时间)

共9页

916-924

相关文献
评论
暂无封面信息
查看本期封面目录

化工学报

0438-1157

11-1946/TQ

68

2017,68(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn