改进粒子群算法优化支持向量机的入侵检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1003-5060.2019.10.008

改进粒子群算法优化支持向量机的入侵检测方法

引用
针对传统支持向量机(support vector machine,SVM)算法应用于入侵检测中存在参数选取的问题,文章提出了一种改进粒子群算法(improved particle swarm optimization,IPSO)和SVM相融合的网络入侵检测方法,即IPSO-SVM.将SVM的惩罚参数C和核函数参数σ作为粒子群的粒子,以K倍交叉验证的准确率作为目标函数,通过粒子间的相互协作得到最优的SVM参数,利用KDD Cup 99数据集进行仿真测试.仿真结果表明,与其他算法相比,IPSO-SVM算法的检测时间更短,检测准确率更高,是一种有效的入侵检测算法.

粒子群算法、支持向量机(SVM)、入侵检测、主成分分析(PCA)

42

TP393.081(计算技术、计算机技术)

广东省教育厅青年创新人才类资助项目自然科学2017GkQNCX116 ,2017GkQNCX119;东莞职业技术学院示范建设专项资金资助项目政201819;广东省大学生"攀登计划"专项资金资助项目pdjh2019b0900

2019-11-26(万方平台首次上网日期,不代表论文的发表时间)

共5页

1341-1345

相关文献
评论
暂无封面信息
查看本期封面目录

合肥工业大学学报(自然科学版)

1003-5060

34-1083/N

42

2019,42(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn