Transformer与CNN融合的单目图像深度估计
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

Transformer与CNN融合的单目图像深度估计

引用
针对单目视觉图像深度估计时存在精度低的问题,提出一种Transformer和CNN融合的单目图像深度估计方法.首先,采用ResNet-50作为编码器-解码器网络的主干网络对图像特征进行提取,同时在编码器-解码器网络中采用层级融合的方法,将编码器各层级特征进行融合作为解码器的输入,提升深度估计网络对多尺度特征信息的利用率.其次,采用Transformer网络对解码器的输出特征进行全局分析,Transformer网络中的多头注意力机制从解码器输出的深层特征中估计深度信息,提高深度估计网络对多尺度特征的提取能力进而提高深度图的精准度.在NYU Depth-v2数据集上完成模型有效性验证.实验结果表明,与多尺度卷积神经网络相比,该方法在精度δ<1.25上提高24.3%,在均方根误差指标上降低61.3%.证明其在单目图像深度估计的可行性.

卷积神经网络、编码器-解码器、Transformer、深度估计、单目视觉

27

TP391(计算技术、计算机技术)

内蒙古自治区科技计划项目2020GG0048

2023-03-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

88-94

相关文献
评论
暂无封面信息
查看本期封面目录

哈尔滨理工大学学报

1007-2683

23-1404/N

27

2022,27(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn