基于优化列文伯格-马夸尔特法的SLAM图优化
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15938/j.jhust.2021.02.009

基于优化列文伯格-马夸尔特法的SLAM图优化

引用
针对目前的视觉SLAM技术中存在的非线性优化方法过程复杂、优化速度慢、优化精度低等缺点,在广泛应用的BA非线性优化方法的框架基础之上,对其核心下降策略列文伯格-马夸尔特法进行优化,以便改善传统的列文伯格-马夸尔特法在BA非线性优化中的不足之处.首先,初始化待优化点处的信赖区域半径;其次,拟定一个扩大倍数,并设定阈值;最后,通过拟定的近似范围限定每次迭代的信赖区间,以达到非线性优化的目的.通过设置对比实验和分析实验的仿真结果,可以得出经过优化后的列文伯格-马夸尔特法下降策略能够加快优化速度,具有优化建图的效果.

BA非线性优化、列文伯格-马夸尔特法下降策略、信赖区域

26

TP242(自动化技术及设备)

中央高校基本科研业务费专项;黑龙江省自然科学基金;创新人才计划

2021-06-03(万方平台首次上网日期,不代表论文的发表时间)

共7页

68-74

相关文献
评论
暂无封面信息
查看本期封面目录

哈尔滨理工大学学报

1007-2683

23-1404/N

26

2021,26(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn