改进的K最近特征线算法在文本分类中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1007-2683.2008.06.006

改进的K最近特征线算法在文本分类中的应用

引用
KNFL算法是一种近年来在人脸识别领域得到广泛应用的算法,这种算法认为类中两点的连线也可以近似代表类的特征,把它应用于文本分类领域可以得到较好的分类效果,但是由于时间复杂度比较高,影响了其实用价值.本文提出了一种应用于文本分类的改进的KNFL算法,计算出类的中心点后再进行两次过滤,分别将离类中心点较远的特征点和特征线过滤掉,减少了训练集样本数目,在对分类精确度影响不大的情况下,改善了KNFL算法的分类效率,最后用实验验证了该算法的有效性.

文本分类、K最近特征线、KNN算法

13

TP181(自动化基础理论)

2009-03-13(万方平台首次上网日期,不代表论文的发表时间)

共4页

19-22

相关文献
评论
暂无封面信息
查看本期封面目录

哈尔滨理工大学学报

1007-2683

23-1404/N

13

2008,13(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn