10.3969/j.issn.1000-1565.2019.01.007
基于支持向量回归的驴肉脂肪和蛋白质近红外检测模型优化
驴肉的脂肪含量低、蛋白质含量高,是一种营养价值较高的食用肉类.选择了40个不同个体和不同部位的驴肉鲜肉样品,采集了样品在4 000~12 500 cm-1光谱的近红外漫反射光谱,并使用索氏提取法和凯氏定氮法分别检测了样品的脂肪和蛋白质参考数据,分别使用主成分分析和偏最小二乘回归对肉块和肉糜2种类型的样品光谱数据进行了压缩,结合支持向量回归算法分别建立了驴肉脂肪和蛋白质的定量模型,并与偏最小二乘回归模型进行了性能比较,发现肉糜光谱使用主成分分析降维结合支持向量回归算法所建立的驴肉脂肪模型,以及肉块光谱使用偏最小二乘回归降维结合支持向量回归算法所建立的驴肉蛋白质模型定量结果最优,其交叉验证均方根误差和相对预测误差分别达到了0.058%、14.69以及0.111%、14.39.结果表明,近红外光谱结合主成分分析或偏最小二乘回归降维以及支持向量回归算法所建立的模型预测精度较高,可对驴肉的脂肪和蛋白质含量进行可靠的检测.
驴肉、脂肪、蛋白质、近红外、支持向量回归
39
TS251.7(食品工业)
国家自然科学基金资助项目31201430;河北省自然科学基金资助项目C2016201092
2019-04-19(万方平台首次上网日期,不代表论文的发表时间)
共6页
35-40