矿物元素结合簇类独立软模式法对冬枣产地判别模型的优化
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-1565.2016.04.008

矿物元素结合簇类独立软模式法对冬枣产地判别模型的优化

引用
为了提高冬枣产地鉴别方法的准确性,测定了69个冬枣样本中10种元素的含量,并对数据进行了差异性分析、主成分分析和簇类独立软模式分析(SIMCA).结果表明,冬枣中Mg、B、Mn、Fe、Zn等元素在不同产地间存在显著差异,利用主成分分析可以看出不同产地样本有较好的聚类趋势.在前4个主成分中,Fe、B、Mn、Zn和K元素的载荷值较高,是重要的产地识别元素.利用SIMCA建立的产地判别模型,置信水平为5%时对验证集样本判别结果最好,识别率为100%,拒绝率为78.95%.研究结果证实了农产品中多元素分析结合SICMA法可以有效用于原产地的鉴别.

冬枣、元素、主成分分析、簇类独立软模式

36

O657.3(分析化学)

国家自然科学基金资助项目31501447;河北省自然科学基金资助项目B2013201235;河北大学自然科学研究项目2014-02

2016-09-08(万方平台首次上网日期,不代表论文的发表时间)

共6页

374-379

相关文献
评论
暂无封面信息
查看本期封面目录

河北师范大学学报(自然科学版)

1000-1565

13-1077/N

36

2016,36(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn