10.3969/j.issn.1000-5641.2018.05.015
基于深度哈希学习的商标图像检索研究
大规模图像检索具有广泛的应用前景,其核心在于图像特征提取和高效相似性计算.深度学习技术在图像特征提取具有较强的特征表示能力,同时哈希技术在高维数据近似计算方面具有较好的性能.目前,基于哈希学习的技术在大规模图像检索及相似性查询方面获得了广泛的研究和应用.本文结合卷积神经网络和哈希技术实现商标图像检索,通过深度学习技术提取商标图像特征,使用位哈希对数据对象编码,在海明空间折中查询的质量和效率.基于卷积神经网络模型,提出了深度哈希算法,并研究了损失函数和该数据集上的优化器选择,通过获取符合哈希编码规范的位编码实现对在二元空间对商标图像数据快速检索,该方法分为离线深度哈希学习和在线查询两个阶段.在真实商标数据集上进行实验,实验结果表明,本文方法能够在商标数据集上获得较高质量的位编码,并具有较高的检索精确度和在线查询效率.
深度学习、哈希学习、商标检索、卷积神经网络、位编码
TP391(计算技术、计算机技术)
国家自然科学基金61502236;中央高校基本科研业务费专项资金KYZ201752
2018-11-21(万方平台首次上网日期,不代表论文的发表时间)
共11页
172-182