基于深度哈希学习的商标图像检索研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-5641.2018.05.015

基于深度哈希学习的商标图像检索研究

引用
大规模图像检索具有广泛的应用前景,其核心在于图像特征提取和高效相似性计算.深度学习技术在图像特征提取具有较强的特征表示能力,同时哈希技术在高维数据近似计算方面具有较好的性能.目前,基于哈希学习的技术在大规模图像检索及相似性查询方面获得了广泛的研究和应用.本文结合卷积神经网络和哈希技术实现商标图像检索,通过深度学习技术提取商标图像特征,使用位哈希对数据对象编码,在海明空间折中查询的质量和效率.基于卷积神经网络模型,提出了深度哈希算法,并研究了损失函数和该数据集上的优化器选择,通过获取符合哈希编码规范的位编码实现对在二元空间对商标图像数据快速检索,该方法分为离线深度哈希学习和在线查询两个阶段.在真实商标数据集上进行实验,实验结果表明,本文方法能够在商标数据集上获得较高质量的位编码,并具有较高的检索精确度和在线查询效率.

深度学习、哈希学习、商标检索、卷积神经网络、位编码

TP391(计算技术、计算机技术)

国家自然科学基金61502236;中央高校基本科研业务费专项资金KYZ201752

2018-11-21(万方平台首次上网日期,不代表论文的发表时间)

共11页

172-182

相关文献
评论
相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn