可分解成不可约矩阵乘积的非负矩阵
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-5641.2008.05.005

可分解成不可约矩阵乘积的非负矩阵

引用
给出了一个n阶非负矩阵可以分解成不可约非负矩阵的乘积的充要条件.并且证明了若一个非负矩阵可分解成不可约非负矩阵的乘积,则可以做到因子个数至多是三个.所用的证明方法是构造性的,可以具体写出各个因子.

非负矩阵、不可约矩阵、有向图、非负单项矩阵、Frobenius标准型

O151.21;O157.1;O157.5;O157.6(代数、数论、组合理论)

国家自然科学基金10571060

2008-12-23(万方平台首次上网日期,不代表论文的发表时间)

共10页

35-44

相关文献
评论
相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn