改进的多目标混合整数优化算法及其在蒸汽动力系统优化中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.14135/j.cnki.1006-3080.2016.06.013

改进的多目标混合整数优化算法及其在蒸汽动力系统优化中的应用

引用
为了提高多目标粒子群算法(MOPSO)的收敛性和多样性,以及增加多目标粒子群算法的适用范围,提出了一种ε约束处理混合三点随机Gbest选择多目标粒子群(ε-TMOPSO)算法.采用一种全新的三点随机Gbest选择机制,用粒子与档案集中非支配解的欧氏距离最近、最远以及处于中间位置的3个粒子构建一个备选池,然后随机选择一个粒子作为Gbest,提高算法的收敛性和多样性;采用改进的带松弛阶段ε约束处理机制处理约束条件,在前期允许加入部分优秀的不可行解,提高算法跳出局部最优的能力;融入Sigmoid函数离散变量编码处理机制,使算法能够处理混合整数问题,增加算法的适用范围.通过测试函数仿真,与EM-MOPSO、NSGA2以及SNSGA算法进行对比,结果表明本文算法在收敛性和分布性上有一定的优势.将该算法应用于乙烯装置蒸汽动力系统优化中取得了较好的效果,进一步证明了该算法的有效性.

多目标粒子群、三点随机Gbest选择、ε约束处理、离散变量编码、蒸汽动力系统

42

TP301(计算技术、计算机技术)

国家自然科学基金61403141,61573141;上海市教育委员会和上海市教育发展基金会“曙光计划”

2017-03-07(万方平台首次上网日期,不代表论文的发表时间)

共8页

827-834

相关文献
评论
暂无封面信息
查看本期封面目录

华东理工大学学报(自然科学版)

1006-3080

31-1691/TQ

42

2016,42(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn