基于SVM的多类分类集成
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于SVM的多类分类集成

引用
为了解决单个SVM可能产生的泛化能力恶化问题以及当SVM采用一对多组合策略解决多类分类时可能产生的误差无界情况,本文采用Bagging方法构造了一个基于SVM的多类分类集成模型,利用MIT KDD 99数据集进行仿真实验,通过实验探讨了其中的两个参数--训练样本数和单分类器个数对集成学习效果的影响,并将其与采用全部样本进行训练及部分样本进行训练的单分类器检测进行了比较.结果表明:集成学习算法能够有效降低采用全部样本进行训练所带来的计算复杂性,提高检测精度,而且也能够避免基于采样学习带来检测的不稳定性和低精度.

SVM集成、多类分类、Bagging(自助聚集)、入侵检测

34

TP393(计算技术、计算机技术)

国家自然科学基金60543005,60674089;教育部高校博士点基金20040251010;广西青年科学基金项目桂科青0728091

2008-12-10(万方平台首次上网日期,不代表论文的发表时间)

共6页

734-739

相关文献
评论
暂无封面信息
查看本期封面目录

华东理工大学学报(自然科学版)

1006-3080

31-1691/TQ

34

2008,34(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn