基于集对分析和GA-BP神经网络的 地下水埋深预测研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19760/j.ncwu.zk.2019052

基于集对分析和GA-BP神经网络的 地下水埋深预测研究

引用
针对地下水位与其影响因素之间存在非线性映射关系的特点,提出了基于SPA方法筛选地下水埋深时空自变量、再基于遗传算法优化BP神经网络进行地下水埋深预测的SPA-GA-BPNN模型.将该模型应用于安徽省蒙城县地下水埋深的预测中,并与全变量-LR、全变量-BPNN、全变量-GA-BPNN、SPA-LR和SPABPNN共5种模型进行对比.结果表明:SPA-GA-BPNN模型预测误差的MPAE值为0.088,MSE值为0.068,NSE值为0.848,误差指标均优于5种对比模型,在泛化性和稳定性方面也有显著优势.基于SPA方法筛选自变量,避免了自变量选取的主观性,且在理论上优于相关系数法,同时,遗传算法对神经网络的预测性能起到了显著的改进作用,可为地下水埋深变化过程的影响因素识别及预测提供可靠、有效的参考依据.

集对分析、联系数、BP神经网络、遗传算法、地下水埋深预测

40

TV61(水利枢纽、水工建筑物)

国家自然科学基金项目51509001;安徽省自然科学基金项目1608085QE112;安徽省高校优秀青年人才支持计划重点项目gxyqZD2017019;安徽省国际科技合作计划项目1604b0602029;水体污染控制与治理科技重大专项项目2017ZX07603-002

2019-10-10(万方平台首次上网日期,不代表论文的发表时间)

共8页

57-64

相关文献
评论
暂无封面信息
查看本期封面目录

华北水利水电大学学报(自然科学版)

1002-5634

41-1432/TV

40

2019,40(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn