基于模糊聚类的多类簇归属电力实体行为异常检测算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7535/hbkd.2022yx05008

基于模糊聚类的多类簇归属电力实体行为异常检测算法

引用
针对数字化主动电网中电力实体行为复杂化、攻击手段隐蔽化等问题,提出了 一种基于模糊聚类的多类别归属异常检测算法.首先,对电力实体行为相似性的度量方式进行优化,并基于优化后的度量方法构建模糊聚类算法,通过多次迭代得到实体行为对应各类别的隶属度矩阵;其次,根据类别软划分隶属度矩阵,分别计算实体在各个类别内的近邻距离、近邻密度与近邻相对异常因子等参数;最后,分析实体在各类簇内的相对异常情况,判断该电力实体行为是否属于异常行为.结果表明,与LOF,K-Means和Random Forest算法相比,新方法具有更高的异常行为检出数量和更优的异常检测评价指标,解决了传统异常检测算法样本评价角度单一的问题,进一步提高了数字化主动电网抵御未知威胁的能力.

数据安全与计算机安全、用户与实体行为分析、数字化主动电网、模糊聚类、异常检测

43

TP393.0;TM769(计算技术、计算机技术)

国家重点研发计划;国家自然科学基金;河北省科技计划项目

2022-12-09(万方平台首次上网日期,不代表论文的发表时间)

共10页

528-537

相关文献
评论
暂无封面信息
查看本期封面目录

河北科技大学学报

1008-1542

13-1225/TS

43

2022,43(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn