一种基于卷积神经网络的下肢动作模式识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7535/hbkd.2022yx04002

一种基于卷积神经网络的下肢动作模式识别方法

引用
针对目前下肢动作模式识别技术存在的数据量少、识别率低的问题,提出了一种新的基于卷积神经网络的下肢动作模式识别方法.以下肢步态动作识别为对象,采集无负重平地行走,无负重上/下楼及负重上/下楼5种步态的表面肌电信号(surface electromyography,sEMG),对sEMG进行特征提取,构建了一种以特征集作为输入的卷积神经网络,并比较了其与另外几种传统分类识别方法的识别准确率和工作特征.实验结果表明,新方法对于5种步态的平均识别准确率大于95%,错误率都低于8%,具有较高的准确性.因此所提方法的输入特征集更能代表预测模型特征,模式识别率更高,可为康复医疗机器人、助力机器人等设备改善下肢运动功能提供参考.

模式识别、表面肌电信号、卷积神经网络、特征提取、分类识别、下肢动作

43

TP241(自动化技术及设备)

重庆市教委科学技术研究项目;重庆市基础与前沿研究计划;国家自然科学基金;重庆市工程实验室资助项目

2022-09-16(万方平台首次上网日期,不代表论文的发表时间)

共8页

347-354

相关文献
评论
暂无封面信息
查看本期封面目录

河北科技大学学报

1008-1542

13-1225/TS

43

2022,43(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn