支持向量机最优参数选择的研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

支持向量机最优参数选择的研究

引用
支持向量机是近几年发展起来的机器学习方法,模型选择是设计支持向量机的关键.基于高斯核函数的支持向量机具有良好的学习性能,被广泛应用于模式分类中,讨论了核函数中C和γ对分类函数的影响,提出针对不同类型的数据,SVM应选用不同的核函数,同时利用二分法对核函数(C,γ)寻优,并将其应用于变压器故障诊断中,仿真结果表明该方法具有较好的性能.

支持向量机、模型选择、高斯核函数、二分法

30

TP18(自动化基础理论)

河北省自然科学基金资助项目F2007000636

2009-05-15(万方平台首次上网日期,不代表论文的发表时间)

共4页

58-61

相关文献
评论
暂无封面信息
查看本期封面目录

河北科技大学学报

1008-1542

13-1225/TS

30

2009,30(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn