基于KPCA-SVM的高压断路器机械故障诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1671-7449.2023.02.011

基于KPCA-SVM的高压断路器机械故障诊断

引用
高压断路器机械故障特征都极为类似,缺少必要分级分类过程会导致识别精度大幅降低.本文提出基于KPCA-SVM的高压断路器机械故障诊断技术.采集高压断路器机械故障样本数据,使用核主元分析方法提取样本中故障的特征向量,将其输入到支持向量机内,完成故障多级分类,通过3个支持向量机训练与分类设备正常状态以及拐臂润滑不足、分闸弹簧脱落两个典型机械故障和其它故障,实现高压断路器机械故障准确、高效诊断.实验结果表明:该技术将正则化参数和核函数参数分别设置为30,15,能获得更优异的诊断性能;诊断各类型缺陷的准确度高达91%,且诊断用时均低于40 s,效率较高.

KPCA-SVM、高压断路器、机械故障诊断、核主元分析、支持向量机

37

TP391.4(计算技术、计算机技术)

贵州电网科技资助项目GZKJXM20200528

2023-04-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

158-164

相关文献
评论
暂无封面信息
查看本期封面目录

测试技术学报

1671-7449

14-1301/TP

37

2023,37(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn